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Abstract 

An exact solution of dynamical diffraction was found 
for a lamellarly distorted infinite crystal. Here the 
deviation of the lattice spacing was assumed to have 
the form Do tanh ax where the spatial variable x is 
normal to the net plane concerned. The problem is 
reduced to solving an ordinary differential equation 
of second order. The linearly independent solutions 
(LIS) are represented in a very symmetric manner 
with the use of the U function defined here. They 
are essentially hypergeometric functions with three 
complex parameters which are specified in terms of 
the diffraction condition and the lattice distortion. 
The analytical properties of the LIS's and their phy- 
sical interpretation are described. Rocking curves are 
calculated for both the Darwin and Ewald cases. The 
theory can be applied to a variety of monotonic lattice 
distortions. 

1. Introduction 

An exact analytic solution of dynamical diffraction 
is desirable for understanding the physics of diffrac- 
tion phenomena in distorted crystals. So far, such 
exact solutions have been obtained in the case of the 
so-called constant strain gradient, both for the Laue 
geometry (Katagawa & Kato, 1974; Chukhovski 
& Petrashen', 1977) and the Bragg geometry 
(Chukhovsld, Gabrielyan & Petrashen', 1978). How- 
ever, since the assumed distortion extends over the 
crystal, the solution is not very useful in cases where 
the distortion is confined to a certain region. 

Bearing this situation in mind, we shall deal with 
the case of a stratified distortion sandwiched between 
two perfect crystals which have different lattice 
spacings. (A more specific description will be given 
in § 3.) Moreover, we shall consider a distortion which 
changes only along the normal of the crystal surface. 
Although the assumed conditions seem rather strin- 
gent, we often encounter such cases in the study of 
solid-state devices, so that the author believes that 
the problem is not merely of mathematical interest. 

Since our problem is essentially one-dimensional, 
the basic equation can be reduced to an ordinary 
differential equation of second order. The two linearly 
independent solutions (LIS) are represented by the 
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U function introduced here, which is essentially a 
hypergeometric function (HGF). It includes three 
parameters, a, b and c, besides the independent vari- 
able z as described in any standard text book.* In 
our solution, the parameters are defined by physical 
quantities such as the deviation from the exact Bragg 
condition, the absorption coefficient and the magni- 
tude and gentleness of the lattice expansion as well 
as the scattering strength of the net plane (structure 
factor), and the variable z is a function of the spatial 
variable x normal to the net plane. 

Recently, Bensoussan, Malgrange & Sauvage- 
Simkin (1987) and Authier, Gronkowski & Malgrange 
(1989) worked out numerical calculations on a similar 
problem. Needless to say, the analytical solution gives 
more physical insight. In fact, the solution can be 
interpreted by the concept of dispersion surface in 
the perfect crystal. Moreover, once the two LIS in 
infinite space have been obtained for the basic 
equation, one can construct any concrete wave field 
in parallel-sided crystals and half-infinite crystals 
simply by taking their linear combination. Also, as 
discussed in § 7, one can generalize the theory to 
some extent for dealing with a wider range of lattice 
distortions. 

In this paper, it is mainly the theoretical aspects 
of the solution that are discussed with an emphasis 
on the Bragg reflectivity (rocking curves). Some con- 
crete (numerical) results and an application to the 
standing-wave method will be presented in later 
papers. 

2. The basic equation 

We shall write the crystal wave as 

O wave: do(r) exp (iKo.r) (2.1a) 

G wave: dg(r) exp (iKs.r) (2.1b) 

where Ko and K~ = Ko + 2¢r~, are the kinematical wave 
vectors satisfying the Bragg condition exactly, and f~ 
is the reciprocal-lattice vector (RLV) for a reference 
perfect crystal. Then the r-dependent amplitudes, do 

* For example, see the books edited by Abramowitz & Stegun 
(1964) and Bateman-Erdelyi (1953), which are referred to as AS 
and BE respectively in this paper. 
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and dg, obey the differential equation of Takagi- 
Taupin type (Takagi, 1962, 1969; Taupin, 1964; Kato, 
1973) 

- c  do=-(l~c/2)do + i(M exp iq~)dg (2.2a) 

(0 0) C-~x dg=-(tZc/2)dg+ i(M exp-i~o)do (2.2b) 

where the t axis is parallel to the net plane and the 
x axis is taken along the RLV. The parameter c is 
defined by tan 0n, 0B being the Bragg angle./z~ is the 
linear absorption coefficient divided by cos 0n, M is 
proportional to the structure factor IF+gl and q~ is 
called the lattice phase, which will be defined later 
by (3.1). 

Through the unitary transformation 

u(t,x)=exp(-iq~/2)do (2.3a) 

v( t, x) = exp (iq~/2)dg, (2.3b) 

(2.2) may be rewritten in the form 

Oq~] u 
[O+(i/2)~t]u-C[~x+(i/2)-~x_l 

= (-tzc/2)u + iMv (2.4a) 

[0 el0 ~ - ( i / 2 ) - ~ -  v +  ~x- ( i /2 )~xx  v 

= (-tz¢/2)v + iMu. (2.4b) 

In this paper, we shall consider a special form of 
the phase; namely ~o = ~o(x). This restriction may be 
relaxed to some extent. Any function q~(t, x) can be 
added to q~, provided that 

d (2.5) 

is satisfied since, then, the decoupled equation (2.4) 
is not changed. More important is that our treatment 
can be generalized to the case in which q~ = ~0(X) 
where X is the normal coordinate to the crystal 
surface (see § 7). Meanwhile, however, implicitly we 
assume the symmetrical Bragg geometry. 

Further, we shall consider the (mixed) Fourier 
component with respect to the variable t instead of 
the wave function itself. For this purpose we shall 
replace u(t, x) by the following scheme: 

u(t,x) ~ exp(-iEt)u(E,x) (2.6a) 

v(t,x) ~ exp(-iEt)v(E,x).  (2.6b) 

Then, (2.4) is transformed to 

e - ic 
[0+ 

~x (i /2) 0---£x u(E,x)+Mv(E,x)=O 

(2.7a) 

e+ic - - -  ( i /2) v(E,x)+Mu(E,x)=O 
Ox 

(2.7b) 

where 
e= E + i(l~c/2). (2.8) 

For convenience, henceforth, the variable x and the 
parameter E will be suppressed in u(E, x) and v(E, x) 
when their inclusion is obvious. The same convention 
will also be used for other cases. 

Equation (2.7) can be decoupled by eliminating 
either u or v in the form 

The double signs + are used for u and v respectively, 
and D is defined by 

D(x)=(c/2)d~o/dx+e. (2.10) 

The real part represents essentially the local deviation 
from the exact Bragg condition. Henceforth, it will 
be called D field. Thus, the problem is reduced to 
solving the second-order ordinary differential 
equation (2.9). 

If the wave function u (for example) is obtained, 
(2.7a) and (2.10) will give the counterpart v in the 
form 

v(E,x)= M- ' [ ic  d~-D(x ) ]u (E ,x ) .  (2.11) 

3. The special deformation 

The lattice phase in (2.2) is defined by 

q~ = 2"rv(f~. n) (3.1) 

where u is the displacement of the lattice point in the 
deformed crystal (e.g. Kato, 1974). The local RLV 
differs from f~ by 

Ag : - ( d / d x ) (  (0/2 7r) (3.2) 

along the x axis. 
In this paper, it is assumed that 

dq~/dx = (2/c)Do tanh ax. (3.3) 

By integrating (3.3), we shall see that 

tO = (2Do/ac)  log (cosh ax), (3.4) 

the integral constant being fixed by q~(0)=0. The 
assumed deformation, therefore, implies an expan- 
sion or compression of the lattice spacing along the 
x axis, depending on the sign of Do. (For definite- 
ness, a is assumed to be positive.) In this context, 
when the Bragg condition is satisfied exactly at the 
depth x = 0, the parameter E is also assumed to be 
zero. 



674 D Y N A M I C A L  DIFFRACTION THEORY OF LAMELLARLY DISTORTED CRYSTALS 

Then, the D field defined by (2.10) has the form 

D(x)  = Do[~(x) + r/] (3.5) 

where 

( F i g .  1). 

~ = tanh ax, r /=  e/Do (3.6a, b) 

4. The  e x a c t  wave field 

4.1. The transmitted wave 

We shall change the position variable x to ~: defined 
by (3.6a). Then, it turns out from (2.9) that the wave 
function u(~:) satisfies an equation having the form 

d 2 d 
(1 - ~:2) h--~- 2~ :~  + ~(~+ 1) 

- (/x2 + 2v2r/sc)/(1 - ~2)] u(~:) = 0 (4.1) 

where 

v= i(Do/aC)= if, (4.2a) 

tz2=[M2-(D~+e2)]/(ozc)  2. (4.2b) 

If 77 = 0, (4.1) is nothing else but the standard form 
of the Legendre equation (AS, 8.1.1). To obtain the 
solution in general cases, the following transforma- 
tion will be made: 

u(~) = G(~)F(~) (4.3a) 

G ( ~ ) = ( 1 - ~ 2 ) q / 2 [ ( l + ~ ) / ( 1 - ~ ) ]  p/2 . (4.3 b) 

Then, the equation for F(s  e) can be written in the form 

g2F" + glF' + goF = 0 (4.4) 

- 1  - 0  

0.5 

-t-oo 
JL 

x ,~ z 

= - c o  

Fig. 1. The model  of  the lattice distortion and the relations among 
spatial variables; x, ~:= tanh ~x and z = ( 1 / 2 ) ( 1 -  ~:). The devi- 
ation of the lattice spacing is assumed to be Do~:. 

where the prime implies d/d~: and 

g2 = (1 - s c2) (4.5a) 

g ~ = 2 ( p - q ~ - ~ )  (4.5b) 

go-- ~(~+ 1)- (~2-2f,2n~)/(1- ~:2) 
- q ( q + l ) + ( p 2 + q 2 - 2 p q £ ) / ( 1 - £ 2 ) .  (4.5c) 

Therefore, one can eliminate two terms proportional 
to ( 1 -  ~:2)-1 in (4.5c) by setting 

p2+ q2 =/z2 (4.6a) 

pq = f,2r/. (4.6b) 

By solving these we have 

p + q = ± i [ ( e - D o ) 2 - M 2 ] l / 2 / c e c  (4.7a) 

p - q = ± i [ ( e + D o ) 2 - M 2 ] ~ / 2 / a c .  (4.7b) 

We shall explain the physical interpretation of these 
parameters in § 4.3. 

By the variable change 

z =  (1-so)/2,  (4.8) 

(4.4) can be rewritten in an explicit form for F(z),  

z(1 - z ) F " +  [(1 + q - p ) - 2 ( 1  + q)z]F' 

+ A(X + 2 q +  1 ) F = 0  (4.9) 

where 

h = i f , -  q. (4.10) 

Equation (4.9) is the standard form of the hyper- 
geometric equation and the solution is well investi- 
gated (AS, chap. 15; BE, chap. II). The simplest 
solution is 

FI = F(a, b; c; z) (4.11a) 

where 

a = - i f , + q ,  b = l + i f , + q ,  c = l + q - p .  

(4.12a, b, c) 

In Appendix A the power series for F is presented 
together with some comments on its convergence. 

After Kummer, 24 forms of the solution of (4.9) 
having different analytical properties are listed (BE, 
pp. 105-106). Obviously, only a set of two among 
them is sufficient to describe any solution of (4.9). 
Here, as the linearly independent solution (LIS), the 
following pair will be adopted: 

F2 = F(a, b; l + a + b - c ;  l - z )  (4.11b) 

F s = z ~ - C ( 1 - z ) C - " - b F ( 1 - a , l - b ; 2 - c ; z )  (4.1 lc) 

which are u2 and u5 in the notation of BE. F2 is 
analytic at z = 1 (x = - o o )  but singular at z = 0 (x = 
+oo). F1 and F5 have the reverse property. The under- 
lying physical reason for this choice will be explained 
in due course. 
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Substituting (4.11a) into (4.3), we have 

u(~) = G(~)FI = U(p, q; if'; ~) (4.13a) 

which will be called the prototype wave in this paper. 
The second equation is the definition of the U func- 
tion. Similarly, we obtain the set of LIS of (4.1), which 
we shall write as 

ua(~)=G(~)F2=U(-p,q;i f ' ; -~)  (4.13b) 

Ub(~)=G(~)Fs=(2)2qU(-p,-q, if';~). (4.13c) 

In connection with these functions, a few mathe- 
matical remarks may be made. The factor (2) 2q in 
(4.13c) may be dropped because a constant is 
irrelevant in considering LIS. To the author's knowl- 
edge, the U function is not given a specific name; 
however, when A ( = - a )  is a positive integer it is 
called Jacobi's polynomials (AS, 22.5.42).* In the 
special case of e = 0 [ 77 = 0; p =/z and q = 0, or p = 0 
and q =/z after (4.6a) and (4.6b)], 

ua(~c) = F(1 +/x)P; '~( -~)  (4.14a) 

Ub(~) = F(1 + ~)P;~'(~) (4.14b) 

where PS~'(~) is the Legendre associate function of 
the first kind, and F ( l + / x )  is the F function (AS, 
8.1.2). 

4.2. The Bragg-reflected wave 

In this section, the expressions for v(~), va(~:) and 
Vb(~) corresponding to u(~), ua(~) and Ub(~) will be 
derived by the use of (2.11) with the explicit 
expression (3.5) for the D field. Since, however, a 
rather lengthy calculation is required, only the outline 
for the prototype wave, u(~:), will be explained. 

It is straightforward to obtain the differential 
relation 

d 
iC-~x U= iac(1- s c2) U(if'; ~). (4.15) 

The right-hand side, after performing the differenti- 
ation, consists of terms proportional to U(if'; ~) and 
a term which is essentially proportional to 
(d/dz)F(a, b; c; z). The latter is given by 
F(a, b; c; z) and F(a+l ,  b - l ;  c; z) by the use of 
the differential formula (AS, 15.2.3) and Gauss's rela- 
tion (AS, 15.2.19) for the contiguous function. Since 
a + l = l - i f ' + q  and b - l = i f ' + q ,  and they are 
exchangeable in HGF, it turns out that (4.15) consists 
of U(if'; ~) and U(-if'; ~). 

Inserting the result into (2.11), we notice that all 
terms proportional to U(if'; ~) cancel out and there 
only remains a single term proportional to U(-if'; ~). 
It is worth noting the following point. The suppressed 

* This s i tuat ion never  happens  in our  problem. The s tandard  
form of  Jacobi 's  po lynomia l  is written as P(,~'t3)(sc). One can show 
that  a = q - p  and fl = q + p in the present  notat ion.  

parameters p and q are implicitly a function of f' 
through Do [cf (4.7a, b)]. However, they are fixed in 
the course of calculation so that only the sign of the 
explicit parameter f' is to be changed. Finally, the 
following result is obtained. 

v(~)= C(p, q)U(p, q; -if,; ~) (4.16a) 

where 

C(p,q)=M-'(o~c/f ')(i f '+p)(if '-q).  (4.17) 

From the same argument, one can obtain 

Va(~)=-C(-p,  q) U(-p, q ; - i f ' ; -~)  (4.16b) 

Vb(SC) = C(-p, -q )U( -p ,  -q; -if'; ~). (4.16c) 

A useful expression for C(p, q) in terms of e, Do and 
M will be given in § 5. 

Here, in order to show the general idea of the U 
function, the amplitudes of O and G waves, which 
are luol and Ivol respectively, are illustrated in Fig. 2. 

4.3. The asymptotic form of the solution 

At the beginning, we shall summarize some results 
so far obtained. After combining all factors intro- 
duced in several transformations [cf. (2.1), (2.3) and 
(2.6), (4.13) and (4.16)], we have the expressions 

O wave: d[G(£)F(if'; £)] exp (iq~/2) 

x exp (-iEt) exp (iK0.r) (4.18a) 

G wave: d[C(p, q)G(~)F(-if'; ~:)] exp (-iqff2) 

xexp (-iEt) exp (iKg.r) (4.18b) 

where d is the amplitude coefficient to be determined 
by the boundary condition (§ 5), and F(if'; ~) is an 
abbreviation for the HGF having the form F [ - i f '  + q, 
1 + if' + q; 1 - p  + q; (1 - ~:)/2] for the prototype wave. 
For the LIS of type (a) and (b), a proper sign must 
be assigned to ~, p and q in G(~) and F(+if'; ~) as 
well as in C(p, q). 

O wave  
. . . . . . . . . . . . . . . . . . . . . . . .  

G .wave  

- , r  .................. - 3 " -  - ~  

1-0 

i 

..... o.51 
I 

!j 

i 

I 
1 

_ .~  . . . . . . .  q 

- - 1  0 

o/X 

1 2 3 4 

Fig. 2. A typical  example  o f  the ampli tudes  of  O wave (ua) and 
G wave (va) versus the variable x for  a non-absorb ing  crystal; 
E = 0  and M/ac= 1. In this par t icular  case, luol=lF(i~;-~)1 
and Ivol = IC~F(-if,;-~)[ so that  the figure illustrates also the 
behaviour  o f  HGF ' s .  
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The purpose of this section is to consider (4.18) in 
the region of large Ixl, where the lattice deformation 
is gentle so that one can expect that they tend to the 
corresponding expression for the perfect crystal. 
Through this treatment, (4.18) will be recast in physi- 
cally understandable forms [see (4.23)]. 

First, the factor exp (+i~0/2) is taken up. From 
(3.4), it is seen that 

~o/2+(Do/aC) log2~(Do/c)x 

~(-Do/c)x 

as x-> +00 
(4.19a) 

as x ~ -0o. 

(4.19b) 

The constant term (Do/aC) log 2 is irrelevant to our 
problem, so it is henceforth dropped. Also, the follow- 
ing arguments will be described in the case of x -~ +0o0, 
unless otherwise stated. 

For our purpose it is convenient to define the 
following vectors having (t, x) components: 

27rAgo: (Do, Do~c) (4.20a) 

2zrag~: ( D o , - D o / c ) .  (4.20b) 

They are illustrated by the vector (OO) and the 
vector (CrG) respectively in Fig. 3. Here, (3 and (~ 
are the standard RL points at the depth of x = 0, and 
O and G are the local RL points in the region of 
x--> +0o which must lie on the Ewald sphere with its 
centre at L. Since we are concerned with the vicinity 
of 0 and Cr,the sphere is approximated by the contact 
plane at O and G. Remembering the relations 
(3.2) and (3.3) [ t a n h a x ~ l ] ,  one can see that 
Ag = A g g -  Ag o is satisfied automatically. 

Next, we shall consider the factor G(~:) [cf (4.3b)]. 
Returning from the variable ~ to x, we obtain the 
asymptotic form 

G(p, q; ~:) = (cosh ax) -q exp (pax) (4.21a) 

--->(2) q exp(p-q)ax (x-~00) (4.21b) 

-->(2) q exp(p+q)ax (x~-00). (4.21c) 

The explicit expressions for a(p+q) are given by 
(4.7). Bearing these in mind we define the deviation 
vector zak having the following (t, x) components: 

Ak: {E+Do,±C-'[(e+Do)2-M2]'/2}. (4.22) 

The end point D of the vector is drawn in Fig. 4 as 
a function of E in the case of non-absorbing crystals 
( e =  E). Using Ak, Ago and gg [(4.20) and (4.22)], 
we can write the total wave in the form 

O wave: dF(i~; ~) 

xexp  i[(f(o-Ak+27rAgo).r] (4.23a) 

G wave: dC(p, q)F(-i~; ~) 
xexp  i [ (Kg-Ak+27rAgg) . r ] .  (4.23b) 

It is easily seen that the vector expression in (4.23) 

has the meaning of the wave vector in the perfect 
crystal where the RLV is f~+Ag(+00) and F(i~; ~) 
and C(p,q)F(-i~; ~) can be interpreted as the 
amplitude. In fact, F(+if,; ~) tends to unity when 
X ~  +00.  

The above interpretation, however, cannot be 
applied straightforwardly to the region of x ~ - 0 0  
although one can write down the asymptotic form of 
the crystal wave in the same manner as (4.23) simply 
by changing the sign of Do in Ak, Ago and A g g .  In 
this case, however, F ( +  i~; s c) oscillates as ~: changes. 
In particular, they are singular at ¢ = - 1  in non- 
absorbing crystals. Therefore, we need a careful con- 
sideration of the phase and amplitude (see § 6). 

Ewald sphere .>Nk~ ~ 

Ewald sphere >/ 0 

Fig. 3. The relation of the wave vectors, Ko and Kg, and the 
standard RLV ~ (x =0)  and the local RLV g (x = +00). The 
broken line indicates the Brillouin zone boundary.  L: the Laue 
point. 0 and (~: the standard RL points. O and G: the local 
RL points (x = +00). 

...-- :: 

(a)J~ / 

D ( + )  

\(b) 

(a)~ 

¢,(a) 

/~  (a) 
b) 

\ 

D(-) ~ ( b )  

Fig. 4. The dispersion surface definable in the region of x ~ +co 
(left) and x ~ - o o  (right). (+) and ( - )  refer to these regions 
respectively. (a) and (b) denote the wings to which the waves 
of type (a) and (b) belong respectively. The figure illustrates a 
non-absorbi.___ ng case. The full hyperbolic lines show the real part 
of Ak=  LD [equation (4.22)]. The dotted circles show the 
imaginary part. AKo = ~ [equation (5.2a)]. L: the Laue point. 
A: the dispersion point of  the incident wave in vacuum. D: the 
dispersion point of the crystal wave. LT= E and L ( + ) L =  
LL(-) = D o. 
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So far, we have discussed the prototype wave. The 
same result is obtained with the LIS of type (a) 
because G(-p, q; -~) = G(p, q; ~). However, the 
interpretation of the amplitude and the phase is 
allowed only in the region of x = - o o  where 
F(+i~;-~) tends to unity. 

In the case of the LIS of type (b), 

G(-p, - q ;  ~:) = (cosh ax) q exp (-pax) (4.24a) 

-->(2) -q exp ( -p+q)ax  (x~+oo) 

(4.24b)* 

" > ( 2 )  - q  exp ( - p - q ) a x  (x~-oo) .  
(4.24c)* 

Again the same argument can be applied also to this 
wave in the region of x = +0o. 

At this stage, it is worth commenting about the 
double sign of the expressions (4.7) for (p+q). As 
will be seen in the next section, we are interested in 
the LIS of type (a) which is finite in the region 
(Xe, --OO), where Xe is the x coordinate of the entrance 
surface. From this requirement we have to assign ( - )  
to (p + q) with the usual convention of the Riemann 
surface for the expression [(e+Do)2-M2] 1/2 as a 
function of (E + Do). Similarly, since we are inter- 
ested in the LIS of type (b) which is finite in the 
region (+oo, xa) where x~ is the x coordinate of the 
exit surface, we must assign ( - )  also to (p + q). Notice 
that the sign of (p+q) in (4.24b, c) is opposite to 
that in (4.21b, c). 

Physically, the dispersion surface is definable in 
the region of Ixl-, oo. The wings (a) and (b) illustrated 
in Fig. 4 must be assigned to u~ and Ub, respectively. 
Thus, the deviation vector Ak can be regarded as a 
single-valued vector for a given E. The double sign 
in (4.7a, b) and (4.22) is redundant when Ua and Ub 
are treated separately. 

5. The solution satisfying the boundary conditions 

It is assumed that the incident plane wave impinges 
on a boundary at x =Xe (~ = ~e; r = r e )  from the +x 
side. We shall discuss the following two cases: (A) 
Darwin's case or a half-infinite crystal; and (B) 
Ewald's case or a parallel-sided crystal with an extra 
exit surface at x =xa (~: = s¢~; r = r~). Since our two 
LIS's with the negative sign of (p+q) satisfy the 
physical requirements of finiteness, we can construct 
the concrete solution by the standard procedure in 
the theory of second-order differential equations. 

The incident wave is assumed to have the form 

De(r)=Deexp[i(Ko-AKo).r] (5.1) 

* If we retain the factor (2) 2q in (4.13c), the factor (2) -q can be 
replaced by (2) q as the LIS of type (a) [cf. (4.21b) and (4.21c)]. 

where the deviation vector A Ko is defined through 
its (t, x) components (see Fig. 4), 

AKo: (E, E/c). (5.2a) 

Since this vector is perpendicular to Ko, it is assured 
that the magnitude of (Ko-zaKo) is K = [Ko[ with 
sufficient accuracy. Similarly, we define also the devi- 
ation vector 

ZlKg: ( E , - E / c ) .  (5.2b) 

Then, the diffracted wave in vacuum can be written as 

Dg(r)= Dg exp [i(f(,g- AKg).r]. (5.3) 

In the Ewald case, one needs the transmitted wave 
in vacuum. It must have the form 

DT(r)=DTexp[i(Ko-aKo).r] .  (5.4) 

The amplitudes Dg and DT may depend on Xe and 
x~ but they are independent of the variable t. This is 
easily anticipated because the RLV has only an x 
component in our model. 

5.1. The Darwin case 

It is enough to take only the LIS of type (a) as the 
crystal wave. The boundary conditions [ D e ( r e )  = 

do(re); Dg(re)= dg(re)] can be written explicitly as 

De exp [- i (E/C)Xe] = daua(~e) exp [ i~p(Xe)/2] 
(5.5a) 

Dg exp [i(E/C)Xe] = d,,v~(~e) exp [--i~(Xe)/2] 
(5.5b) 

where d~ stands for d in the expression (4.18) and 
u~ and Va are given by (4.13b) and (4.16b) respec- 
tively. Solving da and Dg from these, we have the 
expressions for the O and G waves in the crystal with 
the use of d,, for d in (4.18a, b). Also the reflected 
wave in vacuum is obtained by inserting Dg into (5.3). 

It is straightforward to calculate the reflectivity in 
the form 

Rg = lOg~ De[ 2= [l)a(~e)//,/a (~e)[ 2 (5.6a) 

=lco( - ) l  = 

] F ( i ~ + q , l - i ~ + q ; l + p + q ; ( l + ~ e ) / 2 ) 1 2  
X F(- i~+q,  l + i ~ + q ;  l + p + q ;  (l+~:e)/2) 

(5.6b) 

The amplitude ratio C a ( - ) = - C ( - p , q )  can be 
written as follows from the definition (4.17) of 
C(p, q) and the expression of pq [(4.6b)] and p +  q 
[(4.7a)]: 

Ca(- )  = M- ' { [ ( e  - Do) 2 -  M2]'/2-(e - Do)}. (5.7) 

In the case of Xe ~ --00 where the HGF's  tend to unity, 
obviously, the expression (5.6b) is identical to the 
reflectivity of the perfect crystal. It shows the famous 
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silk-hat rocking curve in non-absorbing crystals, 
and a total reflection is expected in the domain of 
[E - O01 < M. 

The second factol; of (5.6b) including HGF's  is 
complicated in general. However, in non-absorbing 
crystals and in the domain of IE - Dol < M (p + q is 
real), one can show that the factor is unity indepen- 
dently of s~e (Appendix B). This implies that total 
reflection always occurs. The result seems strange at 
first sight because the crystal is distorted. However, 
it is reasonable because the crystal is a perfect reflector 
at x = -oo and, after all, the reflected wave comes out 
from the entrance surface. This phenomenon may 
occur in neutron cases but never does in X-ray cases 
because of absorption. 

In another extreme case, x~ = +0% the situation is 
again a little complicated. In fact, if the crystal is 
perfectly non-absorbing, the HGF's in (5.6b) are 
singular. If, however, the crystal is absorbing (even 
to a very small degree) Rg can be written asymptoti- 
cally in the form (Appendix C) 

Rg ~ ICa(+)12lnGF factor[ 2 as ~e -> 1, (5.8a) 

where the second factor is same as the expression in 
(5.6b) with the opposite sign in p and ~e, and Ca(+) = 
C(p,  q) is given by 

Ca (+) = M - '  {[ ( e + Do) 2 - M 2 ]  1/2 - ( e ÷ Do) }. 

(5.8b) 

Now, the HGF's  tend to unity. Therefore, one can 
expect that in the absorbing crystal the rocking curve 
tends to the form of the perfect crystal in the region 
of xe =+oo. The result is reasonable because the 
effective crystal limited by absorption is perfect. 

5.2. The Ewald case 

We have to determine the two amplitude 
coefficients da and db. The procedure for calculation 
is standard so that here only the final results of 
reflectivity and transmissivity are presented. 

Rg=lv,,(~e)Vb(~o)-V.(~a)Vb(~e)12/lAI 2 (5.9a) 

= (5.9b) 
where 

A -- U a ( ~ e ) V b ( ~ a  ) -- Ub(~e ) l )a (~a ) .  ( 5 . 1 0 )  

When ~a tends to -1 ,  [vb(sc,)l>>[v,(~a)] in absorbing 
crystals. Therefore, the expression (5.9a) tends to that 
given by (5.6b). 

6. Creation of a Bloch wave of another type 

In this section, we shall supplement the argument in 
§ 4.3 and discuss the creation of a Bloch wave owing 
to the lattice distortion. As an example, we shall 
take up the LIS of type (a), ua(~:) = G(~)F2 and the 
associated v,,. 

The key to the present argument is based on the 
mathematical relation [cf  equations (1), (5), (17) and 
(35) of § 2.9 of BE; pp. 105-106] 

F2 = F(a, b; l + a + b - c ;  l - z )  (6.1a) 

= WiF(a ,  b; c; z) 

+ W2(z)~-CF(1 + a - c, 1 + b - c; 2 - c; z) 

where 

(6.1b) 

r ( l + a + b - c ) F ( 1 - c )  
W1 = (6.2a) 

F ( l + a - c ) F ( l + b - c )  

F(1 + a + b - c)F(c  - 1) 
W2 = (6.2b) 

r ( a ) r ( b )  

and the parameters a, b, e are defined by (4.12) in 
our problem. Multiplying the asymptotic form of 
G(s c) [(4.21 b, c)] and using 1 - c = p - q, we easily see 
that 

Ua--~ (2)q[ W1 e x p ( p - q ) a x +  W 2 e x p ( q - p ) a x ]  

as x ~  +oo (6.3a) 

-->(2) q exp ( p + q ) a x  as x ~ - o o  (6.3b) 

where HGF's  are omitted because their asymptotic 
values tend to unity in the respective region. A similar 
result is also obtained for the diffracted wave va as 
follows: 

Va ~ (2)qCa(-)[ V~l exp ( p - q ) a x  

+ W2 exp (q - p ) a x ]  as x-~ oo (6.4a) 

~ ( 2 ) q c , ( - ) e x p ( p + q ) a x  as x ~ - ~  (6.4b) 

where ff'l and if'2 are the same expression as W1 and 
WE, respectively, with the use of the opposite sign 
for the parameter ~. 

The physical interpretation is given as follows. The 
first terms of (6.3a) and (6.4a) constitute the incident 
Bloch wave belonging to the wing (a) of the disper- 
sion surface in the region of x-~ +co. It propagates 
through the distorted region and emerges in the form 
of (6.3b) and (6.4b). This is the transmitted Bloch 
wave and, in fact, one can assign it to the wing (a) 
of the dispersion surface defined in the region of 
x ~ - o o .  On the other hand, the incident wave is 
always associated with a Bloch wave in the form of 
the second terms of (6.3a) and (6.4a), which belong 
to the wing (b) of the dispersion surface in x-~ + ~ .  
This wave can be interpreted as the reflected Bloch 
wave created by the lattice distortion. 

In the case of half-infinite crystals, in which we are 
most interested here, the above interpretation needs 
an extension for the incident and reflected Bloch 
waves. Strictly speaking, the concept of the Bloch 
wave is allowed only in the perfect crystal. Here, we 
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consider the modified Bloch wave (MBW) as intro- 
duced in the eikonal theory (Kato, 1963, 1974). 

For convenience, the first and second HGF's  
appearing in the expression (6.1b) are denoted by F 1 
and F 2. Notice that the parameters are different. If 
they are gently changed near the entrance surface, 
one can define the incident and reflected MBW 
similarly to the Bloch waves as has been done in the 
region of x-> +oo. This procedure is unique provided 
that Ze is small, say less than 0.5 depending on the 
parameters involved in HGF's.  If Ze is close to unity, 
the expression (6.1a) should be used as the wave 
function. Then, no wave is created and we are not 
interested in such cases. 

On the entrance surface, the intensity (energy) 
carried by the incident MBW can be written in the 
form, neglecting the interference term, 

IB=[Gr[lW, F'(i~; ze)[ 2 

+lcavc, F'(-ip; Ze)12]. (6.5a) 

Also, the intensity of the reflected MBW has the form 

RB = Gz(p-q) 2[ W2F2(if,; Ze ) 2 

-I-Ifa~T¢2F2(-if,; Ze)[2]. (6.5b) 

Similarly, the transmitted Bloch wave can be written 
as 

TB = IGI2(1 ÷lEvi 2) (6.5 c) 

by the use of the original expressions for ua and va, 
where the HGF can be omitted. 

7. Summary and discussion 

Starting from the fundamental equation of Takagi- 
Taupin type, we arrived at equation (2.9) which is 
suitable for studying the diffraction in a crystal with 
lamellar distortion. We investigated the symmetrical 
Bragg case in detail for a specific distortion described 
by (3.2) and (3.3). 

First, we obtained the two linearly independent 
solutions ua and Ub for the O wave [(4.13b, c)] and 
the associated G waves va and Vb [(4.16b, c)] in an 
infinite crystal. All of them can be represented by the 
U function defined by (4.13a) in a very symmetrical 
manner with respect to the parameters involved 
(p, q, i~) and the position variable ~:--tanh ax. 

The U function is a product of the algebraic func- 
tion G(~) and one HGF. HGF's  are well investigated 
in applied mathematics so that, in principle, it is not 
very difficult to handle them analytically and even 
numerically. Nevertheless, as the parameters p, q 
mentioned above are in general complex, their phy- 
sical meanings are not very straightforward. 

For this reason, next, an attempt was made to 
obtain the asymptotic form of the LIS's in the regions 
of large Ix] (§§ 4.3 and 6). Then, it can be shown that 
( p ± q )  are related to the deviation wave vector Ak 

in :~oo regions, respectively. Moreover, through this 
analysis, the crystal wave can be interpreted by the 
modified Bloch waves. 

The MBW creates another MBW in the distorted 
region. It is the reflected MBW of the original one. 
Thus, one can expect a kind of Pendelliisung oscilla- 
tion in the region x > 0 owing to the presence of two 
MBW's. A typical example is shown in Fig. 2. It is 
worth noting that, although HGF's  may be singular 
at either s ¢= 1 or -1 ,  the wave functions are regular 
as a function of the physical coordinate x. The singu- 
larity is merely mathematical,  due to the contraction 
of the infinite variable region x(+oo, -co)  into the 
finite region ~(1, - 1). 

Incidentally, the creation of a new Bloch wave does 
not occur in perfect crystals because the Bloch wave 
is an eigenfunction in the perfect crystal. It is well 
known that such a creation occurs only on the exit 
surface, or at a plate-like defect such as stacking faults 
or twin boundaries. The present theory illustrates 
explicitly that such phenomena occur in any con- 
tinuously distorted region. 

As an application, the formulae for rocking curves 
are presented corresponding to the Darwin and the 
Ewald case. Once the two LIS's have been obtained, 
one can calculate the reflectivity and transmissivity 
by an algebraic manipulation of the values of the 
LIS's on the entrance and exit surfaces. This is a great 
merit of the analytical approach. In the Darwin case, 
some analytical properties were discussed in § 5. 

Finally, we shall discuss briefly the extension of 
the present theory. It is not difficult to generalize the 
treatment to the asymmetric case and even to the 
Laue case, provided that the lattice phase ~o [(3.1)] 
has the same form as (3.4) as a function of X normal 
to the crystal surface. Then, the problem remains of 
solving a one-dimensional differential equation, 
because the relevant differentiations O/Ot and O/Ox 
can be replaced by d / d X  multiplied by definite 
geometrical constants. 

Because of the relaxation of strain on the crystal 
surface, the above model is physically plausible at 
least in a limited area of the surface. If this area is 
sufficiently wide from the viewpoint of diffraction, 
one can apply the present theory. In this context, it 
is to be noted also that the theory can be used in 
practice for any monotonic one-dimensional distor- 
tion. Then, we are able to select two positions xe and 
xa and the parameters Do and a in such a way that 
the functional form (Do tanh ax) describes closely 
the distortion concerned. 

Remembering these flexibilities, as worked out by 
Authier et al. (1989), one interesting topic is the 
application to the standing wave method, which 
affords valuable information about the atomic struc- 
ture on the crystal surface and an interface between 
two perfect crystals. When the surface and the inter- 
face are associated with an intrinsic lattice distortion, 
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the present theory must be useful for calculating the 
standing wave field. 

APPENDIX A 

The power series for a HGF 

The standard HGF is defined by the power series 

F(a , /3 ;  y; ~')= £ ( a ) , ( /3 ) ,  ~., (A.1) 
,=o (y),,n! 

where ( a ) ,  are Pochhammer's  symbols; (c~),= 
F (o l + n) /F (a ) ,  and ~" stands for 1 - z  and z for ua 
and Ub, respectively. The series is regular at ~" = 0 and 
absolutely converges for ~" < 1, if 3' is not 0, -1 ,  - 2 , . . .  
(condition 1). If Re (a  +/3 - y) < 0 (condition 2), the 
series converges absolutely also at ~" = 1. 

In our problem, when the crystal is absorbing, 
Re(p + q) are positive except that they take zero for 
the case of a special value of E. This ensures in 
practice the above two conditions for LIS's. In non- 
absorbing crystals, the convergence of u~ and Ub is 
conditional at z = 0 and z -- 1, respectively. Physically, 
we can eliminate such cases by limiting the crystal 
by the entrance and exit surfaces. Condition 1 is 
always satisfied. 

APPENDIX B 

Proof of I F*( i~;  q)l = I F ( - i ~ , ;  q)l when (p + q) is real 
in non-absorbing crystals 

Here, the following abbreviation is used: 

F(if,; q)= F( - i f ,+  q, l + i ~ + q ;  l + p + q ;  l - z ) .  

(B.1) 

The value of (p - q) is either purely real or imaginary. 
For convenience we shall write 

q = ( 1 / E ) [ ( p + q ) - ( p - q ) ] .  (B.2) 

If ( p -  q) is purely real, q itself is real. In this case, 
the proof is obvious. 

If ( p - q )  is purely imaginary, q*=p from (B.2). 
Therefore, the HGF (B.1) can be rewritten with the 
use of equation (6) on p. 105 of BE in the form 

F(i~; q) = z ( P - q ) F ( i ~ ;  p) 

=z(P-q)F*(-ifJ; q). (B.3) 

Since ( p - q )  logz is purely imaginary, namely 
Z (p-q)  = 1, the proof is completed. 

APPENDIX C 

The mathematical supplement to u~ and ub 

We shall start with the expression of uo [(4.13b)]. 
The same argument can also be applied to Ub. As 
often mentioned, Re (p + q) > 0 for absorbing crys- 
tals. We shall discuss only this case in this Appendix. 

(a) The asymptotic form of ua near z = 1 

The definition of F2 [(6.1a)] will give the 
expression 

u,. = (2)q(z)-(P-q)/2(1 - z) (p+q)/2 

xF(a ,  b; l + a + b - c ;  l - z ) .  (C.1) 

Here, F is analytic. The singularity may arise only 
from the third factor, which is 

S = e x p [ ( 1 / 2 ) ( p + q ) l o g ( 1 - z ) ] .  (C.2) 

Since log (1 - z) is real and negative, S is an exponen- 
tially damping function towards x = -oo so that u~ is 
in fact regular. 

( b ) The asymptotic form Of Ua near z = 0  

If the expression (6.1 b) is used for F2 we shall have 
another expression, 

Ua = (2)q(1 - -  z)(P+q)/2[ Wlz-(P-q)/2 F( a, b; c; z) 

+ W2z(P-q)/2F(1 + a - c, 1 + b - c; 2 - c; z)] 

(C.3) 

where 1 - c  = p - q  is used. Now, the two HGF's  are 
analytic. The singularity may arise through the factor 
Z ±(p-q)/2. Similarly to the argument on S, one can 
conclude that the first term in square brackets 
increases exponentially as x increases and the second 
term attenuates. 

Therefore, the leading term of Ua has the form 

ua = (2) q exp [ - ( 1 / 2 ) ( p -  q) log z] 

r ( l + p + q ) r ( p - q )  

F ( - i ~  + p)r(1 + if, + p) 

x F(a, b; c; z). (C.4) 

( C) The reflectivity in the Darwin case 

The expression (5.6b) cannot be used in practice 
when ~:e is close to 1, because the HGF's  involved 
have a singular behaviour. In this case we use the 
original form (5.6a), and the leading term (C.4) for 
ua and a similar one for va [ ~ - ~ -  P]. Then we shall 
have an analytic expression (5.8a) even at ~e = 1. In 
fact, the singular factors of ua and va and the F 
functions in the nominator of (C.4) are cancelled and 
we obtain 

v~/u~ = - C ( - p ,  q) (p+ if, i f ( p - i ~ ) ( H G F  factor) 

= C(p, q) (HGF factor). (C.5) 
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Abstract 

A two-wavelength method (8 synthesis) which deals 
with the experimental distinction of elements with 
similar atomic number by means of single-crystal 
X-ray diffraction measurements is presented. This 
method uses the characteristic wavelength depen- 
dence of the anomalous-dispersion correction terms 
f '  and f "  close to the absorption edges of the corre- 
sponding elements. In case of a properly chosen 
wavelength combination the resulting difference elec- 
tron density map (8 map) mainly shows peaks at the 
positions of the 'near-edge' element. The basic mathe- 
matical formalism is described and selection rules for 
the determination of the optimal wavelength combi- 
nation are derived. The applicability in case of mixed 
occupancy and/or occupancy deficiency is discussed. 
A series of 8 maps which are based on theoretical 
data sets and calculated according to the formalism 
of the 8 synthesis are shown. From this the influence 
of errors on the interpretation of the 8 map can be 
estimated and the requirements on the experimental 
conditions can be determined. First experimental 
results concerning the distinction of Pb/Bi in the well 
known crystal structure of galenobismutite (PbBi2S4) 
are presented. They show that the 8 synthesis is not 
only a theoretical model, but can be applied success- 
fully in practice. For experimental reasons the 
applicability of the 8 synthesis is restricted to ele- 
ments with atomic numbers greater than Z = 22. 

Introduction 

The experimental distinction of elements with similar 
atomic number Z (e.g. Pb/Bi) in crystal structures 

0108-7673 / 90/080681-08503.00 

by use of conventional X-ray diffraction techniques 
is usually not possible due to the small difference of 
the corresponding atomic scattering power fj. The 
only way to solve this problem is to enlarge these 
differences. This can be done using anomalous disper- 
sion effects. 

The atomic scattering factor fj is usually written as 

fj(h, A )=f°(h)+f~(A )+/f j '  (h), 

fo = Z in case of (sin 0)/h = 0. 

The terms f~ and f~' due to anomalous scattering vary 
drastically only close to the absorption edges. Apart 
from that they are nearly wavelength independent. 
This physical property can be used to solve the crys- 
tallographic problem outlined above by choosing a 
suitable wavelength to contrast the electron density 
map. 

However this method remained generally theoreti- 
cal in the past, as long as experimental requirements 
such as (1) free choice of the wavelength and addi- 
tionally high photon flux in the X-ray region and (2) 
small bandwidth (i. e. small AA/A) were not available. 
Recently the rapid development of improved syn- 
chrotron radiation sources has made it an experi- 
mental method. 

In 1984, a paper was presented (Ohsumi, Tsutsui, 
Takeuchi & Tokonami, 1984) in which an attempt 
was made to determine the Pb/Bi distribution in the 
crystal structure of lillianite (3PbS.Bi2S3). The experi- 
ment was carried out at the Photon Factory in Japan 
at a wavelength close to the LIH absorption edge of 
lead. The data were analysed using the usual 
difference Fourier synthesis. But the atomic positions 
were not distinguished definitely due to insufficient 
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